If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9^2+40^2=x^2
We move all terms to the left:
9^2+40^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+1681=0
a = -1; b = 0; c = +1681;
Δ = b2-4ac
Δ = 02-4·(-1)·1681
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6724}=82$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-82}{2*-1}=\frac{-82}{-2} =+41 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+82}{2*-1}=\frac{82}{-2} =-41 $
| -3/2+x-3/4=-2/3 | | x-5/x+5=4x+7 | | A=2/3x21 | | 3x+34–(2x+1)=53 | | 15x-3=25 | | 5x^2+7x+250=0 | | 17x-8=5x+40 | | 7/2y=21 | | 20/7=50/x | | O.7^n=0.25 | | (19x-2)=(-9x+4)=180 | | 5=3*(1-2x) | | x^2-x+0.679366=0 | | x^2-x+(√78/13)=0 | | h/8+3=12 | | 3.3x-11.48=3.7 | | r/16+3=6 | | (√x/√(1-x))+(√(1-x)/√x)=13/6 | | 43-x^2=-12 | | 5f/4+3=18 | | 14x-4=64 | | 241*x^2-241x+36=0 | | (19x-2)=(-9x+4) | | -3x=(x+2) | | (19x-2)=(-9x4) | | 2x+1=7x−9 | | 2.9·4.3=a | | 5x+21=-33 | | √(x/(1-x))+√((1-x)/x)=13/6 | | 45x^2+99x+18=0 | | 2(a+4)+a=17 | | Y=3/x+2 |